Optimized spatial sampling of soil for estimation of the variogram by maximum likelihood
نویسنده
چکیده
Recent studies have attempted to optimize the configuration of sample sites for estimation of the variogram by the usual method-of-moments. This paper shows that objective functions can readily be defined for estimation by the method of maximum likelihood. In both cases an objective function can only be defined for a specified variogram so some prior knowledge about the spatial variation of the property of interest is necessary. This paper describes the principles of the method, using Spatial Simulated Annealing for optimization, and applies optimized sample designs to simulated data. For practical applications it seems that the most fruitful way of using the technique is for supplementing simple systematic designs that provide an initial estimate of the variogram. q 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
A comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملSpatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater
Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used...
متن کاملBearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملConditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model
‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...
متن کاملCatchment-scale spatial variability analysis of soil hydro-physical properties in a semi-arid region of Iran
Soil hydrau-physical data are important for many hydrological modelings. They are the main variables controllingthe key processes such as water and chemicals movement and transport in the soil profiles. This study was conductedin order to analyze the spatial distribution of selected soil hydrau-physcial characteristics including infiltration rate(IR), saturated hydraulic conductivity (Ks), bulk...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000